Skip to main content
Log in

Effects of processing methods on the electrical conductivity, electromagnetic parameters, and EMI shielding effectiveness of polypropylene/nickel-coated carbon fiber composites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The effects of composite preparation methods on the electrical conductivities, the electromagnetic parameters and the electromagnetic interference (EMI) shielding effectiveness of polypropylene (PP)/nickel-coated carbon fiber (CF) composites were investigated. The composites were prepared by injection molding machine, internal mixer, and screw extruder. The electrical properties results showed the PP/CF (70/30, wt%) composites prepared by injection molding demonstrated the highest electrical conductivity and EMI shielding effectiveness, which were 1.75×101 S/cm and 48.4 dB at the frequency of 10 GHz, respectively. These results seem mainly due to the increased CF length when the PP/CF composite was prepared by injection molding, which was advantageous in forming a conductive network of the composite. The results of the electromagnetic parameters of the PP/CF composites showed that the increased electrical conductivity of the composite prepared by injection molding was mainly due to the increased dielectric constants (ε' and ε") of the PP/ CF composite. This enhancement in dielectric constants seems related to the percolation at a lower concentration of the CF, which was affected by the increased CF length of the composite prepared by injection molding process. The results of dielectric loss and magnetic loss factors of the PP/CF composite showed that the major electromagnetic absorbing mechanism was dielectric loss, namely dipole polarization and interface polarization between filler and matrix, which resulted in improved EMI absorption values. The total EMI shielding effectiveness (SET) of the PP/CF composite comprised 85.1% EMI shielding effectiveness by absorption (SEA), and 14.9% EMI shielding effectiveness by reflection (SER), which suggests that the EMI shielding was predominantly by the absorbing mechanism of the incident electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, Science, 353, 1137 (2016).

    Article  CAS  Google Scholar 

  2. A. H. Frey, Health Perspect., 106, 101 (1998).

    Article  CAS  Google Scholar 

  3. H. Wang, N. Ma, Z. Yan, L. Deng, J. He, Y. Hou, Y. Jiang, and G. Yu, Nanoscale, 7, 7189 (2015).

    Article  CAS  Google Scholar 

  4. Q. Ling, J. Sun, Q. Zhao, and Q. Zhou, Mater. Sci. Eng. B, 162, 162 (2009).

    Article  CAS  Google Scholar 

  5. N. Zhao, T. Zou, C. Shi, J. Li, and W. Guo, Mater. Sci. Eng. B, 127, 207 (2006).

    Article  CAS  Google Scholar 

  6. A. Ameli, P. U. Jung, and C. B. Park, Carbon, 60, 379, (2013).

    Article  CAS  Google Scholar 

  7. N. Abbas and H. T. Kim, Macromol. Res., 24, 1084 (2016).

    Article  CAS  Google Scholar 

  8. G. Salimbeygi, K. Nasouri, A. M. Shoushtari, R. Malek, and F. Mazaheri, Macromol. Res., 23, 741 (2015).

    Article  CAS  Google Scholar 

  9. A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh, A. P. Singh, S. K. Dhawan, and S. R. Dhakate, ACS Appl. Mater. Interfaces, 8, 10600 (2016).

    Article  CAS  Google Scholar 

  10. M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, Carbon, 50, 5126 (2012).

    Article  CAS  Google Scholar 

  11. M. H. Al-Saleh, S. A. Jawad, and H. M. El Ghanem, High Perform. Polym., 26, 205 (2013).

    Article  Google Scholar 

  12. S. Kim, J. W. Lee, I.-K. Hong, and S. Lee, Macromol. Res., 22, 154 (2014).

    Article  CAS  Google Scholar 

  13. S. W. Yoon, S. Lee, I. S. Choi, Y. Do, and S. Park, Macromol. Res., 23, 713 (2015).

    Article  CAS  Google Scholar 

  14. M. Lee, J. Koo, H. Ki, K. H. Lee, B. H. Min, Y. C. Lee, and J. H. Kim, Macromol. Res., 25, 231 (2017).

    Article  CAS  Google Scholar 

  15. W. I. Jang, J. W. Lee, Y. M. Baek, and O O. Park, Macromol. Res., 24, 276 (2016).

    Article  CAS  Google Scholar 

  16. F. Shahzad, P. Kumar, Y.-H. Kim, S. M. Hong, and C. M. Koo, ACS Appl. Mater. Interfaces, 8, 9361 (2016).

    Article  CAS  Google Scholar 

  17. P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim, and C. M. Koo, Carbon, 94, 494 (2015).

    Article  CAS  Google Scholar 

  18. J. M. Kim, D. H. Kim, J. Kim, J. W. Lee, and W. N. Kim, Macromol. Res., 25, 190 (2017).

    Article  CAS  Google Scholar 

  19. M. G. Jang, Y. K. Lee, and W. N. Kim, Macromol. Res., 23, 916 (2015).

    Article  CAS  Google Scholar 

  20. S. J. Lim, J. G. Lee, S. H. Hur, and W. N. Kim, Macromol. Res., 22, 632 (2014).

    Article  CAS  Google Scholar 

  21. S. H. Lee, E. Cho, S. H. Jeon, and J. R. Youn, Carbon, 45, 2810 (2007).

    Article  CAS  Google Scholar 

  22. F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S. M. Hong, and C. M. Koo, Compos. Struct., 133, 1267 (2015).

    Article  Google Scholar 

  23. Y. Xu, Y. Li, W. Hua, A. Zhang, and J. Bao, ACS Appl. Mater. Interfaces, 8, 24131 (2016).

    Article  CAS  Google Scholar 

  24. S. Yu, J.-W. Lee, T. H. Han, C. Park, Y. Kwon, S. M. Hong, and C. M. Koo, ACS Appl. Mater. Interfaces, 5, 11618 (2013).

    Article  CAS  Google Scholar 

  25. H. B. Zhao, Z. B. Fu, H. B. Chen, M. L. Zhong, and C. Y. Wang, ACS Appl. Mater. Interfaces, 8, 1468 (2016).

    Article  CAS  Google Scholar 

  26. B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, and R. Zhang, ACS Appl Mater Interfaces, 8, 28917 (2016).

    Article  CAS  Google Scholar 

  27. J. Zeng and J. Xu, J. Alloy Compd., 493, 39 (2010).

    Article  Google Scholar 

  28. G. Shen, Z. Xu, and Y. Li, J. Magn. Magn. Mater., 301, 325 (2006).

    Article  CAS  Google Scholar 

  29. B. Qu, C. Zhu, C. Li, X. Zhang, and Y. Chen, ACS Appl. Mater. Interfaces, 8, 3730 (2016).

    Article  CAS  Google Scholar 

  30. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, Small, 8, 1214 (2012).

    Article  CAS  Google Scholar 

  31. J.-Z. He, X.-X. Wang, Y.-L. Zhang, and M.-S. Cao, J. Mater. Chem. C, 4, 7130 (2016).

    Article  CAS  Google Scholar 

  32. J. Xu, J. Liu, R. Che, C. Liang, M. Cao, Y. Li, and Z. Liu, Nanoscale, 6, 5782 (2014).

    Article  CAS  Google Scholar 

  33. T. W. Yoo, Y. K. Lee, S. J. Lim, H. G. Yoon, and W. N. Kim, J. Mater. Sci., 49, 1701 (2014).

    Article  CAS  Google Scholar 

  34. D. H. Park, Y. K. Lee, S. S. Park, C. S. Lee, S. H. Kim, and W. N. Kim, Macromol. Res., 21, 905 (2013).

    Article  CAS  Google Scholar 

  35. M. G. Jang, C. Cho, and W. N. Kim, J. Compos. Mater., 51, 1005 (2017).

    Article  Google Scholar 

  36. G. Lu, X. Li, and H. Jiang, Compos. Sci. Technol., 56, 193 (1996).

    Article  CAS  Google Scholar 

  37. G.-Y. Heo, Y.-T. Hong, and S.-J. Park, Macromol. Res., 20, 503 (2012).

    Article  CAS  Google Scholar 

  38. B. Yuan, L. Yu, L. Sheng, K. An, and X. Zhao, J. Phys. D: Appl. Phys., 45, 235108 (2012).

    Article  Google Scholar 

  39. C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed., Wiley Interscience, Hoboken, NJ, 2006.

    Google Scholar 

  40. J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng. R.-Rep., 74, 211 (2013).

    Article  Google Scholar 

  41. F. Qin and C. Brosseau, J. Appl. Phys., 111, 61301 (2012).

    Article  Google Scholar 

  42. P. Pötschke, S. M. Dudkin, and I. Alig, Polymer, 44, 5023 (2003).

    Article  Google Scholar 

  43. T. Nakamura, J. Appl. Phys., 88, 348 (2000).

    Article  CAS  Google Scholar 

  44. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Appl. Phys. Lett., 98, 072906 (2011).

    Article  Google Scholar 

  45. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett., 6, 1141 (2006).

    Article  CAS  Google Scholar 

  46. H. W. Ott, Electromagnetic Compatibility Engineering, Wiley, New York, 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Min Koo or Woo Nyon Kim.

Additional information

Acknowledgments: This research was supported by the LG Hausys and the Brain Korea 21 Plus Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Kim, J.Y., Koo, C.M. et al. Effects of processing methods on the electrical conductivity, electromagnetic parameters, and EMI shielding effectiveness of polypropylene/nickel-coated carbon fiber composites. Macromol. Res. 25, 936–943 (2017). https://doi.org/10.1007/s13233-017-5113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5113-x

Keywords

Navigation